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Abstract

For an ordered set of n values, each with an associated integer label, the multiprefix operation
calculates a partial sum for each value that is the sum of all preceding values with the same
label. The multiprefix operation has been proposed as a parallel primitive because of its power for
expressing many data parallel algorithms succinctly. However, most approaches to implementing
this operation have used integer sorting to gather elements with the same label together or have
suggested special hardware.

In this paper we present a work efficient algorithm for the multiprefix operation on n elements
that runs in S = O(Vf') parallel steps on a p = V processor CRCW-ARB PRAM. The CRCW-
ARB model ensures only that of multiple processors writing to the same location, an arbitrary
one succeeds. We make use of this feature to resolve data dependencies in the first phase of the
algorithm only so that all later steps guarantee EREW memory access.

A fully vectorized version of our algorithm has been designed for the CRAY Y-MP and provides
good performance for a number of important algorithms. For the integer sorting test of the NAS
benchmarks, our multiprefix operation was used to create an algorithm that is competitive in
performance with the current best algorithms for that machine. As another example, we show
that by using the multiprefix operator for sparse-matrix dense-vector multiplication, we obtain
performance exceding traditional FORTRAN-based approaches. Finally, our algorithm also makes
possible the simultion of a CRCW-PLUS PRAM on a p processor CRCW-ARB PRAM with only
constant slowdown for problem sizes n > p2.
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1 Introduction

Each of an ordered set of data values A = (a1, a2, ... , an) are associated with integer labels L =
(12, 12, ... , /.) with 1i E {1, 2,..., m}. The multiprefix problem is to compute a collection of partial
sums S = (S1,9 S2 ---, ,n) for the values and a set of reductions R = {r1,12, -.., .tr} for the labels
such that

S, = {ai I = 1 liandj < i}

and
rh= { = kandk E L}.

That is, for each value its multiprefix result is the sum of all elements with its same label preceeding
it in vector order. And for each label, its reduction is the sum of all values with that label. For
example, given a vector of values, A, and labels, L, as shown in Figure 1, a call to the multiprefix
operator would produce the results in S and R as illustrated. Because only preceding values
contribute to each sum, the first sum of each "group" of equal labels is 0, and because only the
labels 2 and 3 appear in the L vector, the reduction vector R has non-zero values only at these
positions.

The general multiprefix operator solves the multiprefix problem and extends the summing
operation to any binary associative operator on values of arbitrary type. As an operator, it accepts
vectors containing the values and labels, a binary associative operator, and computes the values
of the sums and reductions with resp',ct to the operator given. Typical operators are MAX, MIN,
PLUS, MULT, AND and OR on data types INTEGER, FLOATING and BOOLEAN. Throughout
this paper we will concentrate on the multiprefix-PLUS operator, but our discussion generalizes to
any binary associative operator as long as 0 is replaced with the appropriate identity element for
the operator chosen.

The multiprefix operator has been previously proposed as a parallel primitive for the Fluent
abstract machine [RBJ88I and as a general purpose parallel primitive [Coh90]. Our definition of
the multiprefix operator is nearly identical to the one given in [Coh90] but differs from the one
given in [RBJ881 slightly. In that formulation, the labels were references to shared variables to
which the reduction values were written, and the operation was not presented in a data parallel
framework. These differences are inconsequential.

The multiprefix operator subsumes the functionality of many other parallel primitives. For
instance, it iprovides the functionality of the fetch-and-op primitive of the NYU Ultracomputer
[GLR81]. While the fetch-and-op primitive is non-deterministic in its evaluation order, the multi-
prefix operator ensures that results are computed in vector index order. Multiprefix also provides
the functionality of the segmented-scans [Ble901 and the combining-sends of the Connection Ma-
chine [Hil85], and can be used to implement the P operation of CM-Lisp [SH86]. A segmented-scan
is simulated by distributing the same label to each element in a segment and then executing the
multiprefix operation. A combining-send operation is provided directly by multiprefix, but only
the reduction values are used. When the multiprefix sums are not computed, we call this a "mul-
tireduce" operation. The multireduce operation occurs most frequently as histogram computation
which is important enough that a special "Vector Update Loop" compiler directive has been sug-
gested to identify this procedure [PMM92, page 18]. In short, the multiprefix operation attempts
to unify the functionality of these many varied parallel primitives.



A =[1 1 5 1 6 1 7
L =[3 3 2 3 2 3 2]

KP(A, L, +, S, R);

INDEX= 1 2 3 4 5 6 7
S =[0 1 0 2 5 3 11]
R =[0 184 ]

Figure 1: An example multiprefix result given a vector of data values (A) and an associated vector of labels
(L). The two results computed are the multiprefix sums (S) and the reductions for each label (R). Each
reduction value represents the sum of all values with that label.

Table 1: Comparison of Integer Sorting Algorithms on the CRAY Y-MP for the NAS Integer Sorting
benchmark. This test involves sorting 8 million 19-bit integers 10 times.

NAS Integer Sorting Benchmark

Method Time (Secs)
Partially Vectorized FORTRAN Bucket Sort 18.24

Cray Research Inc. Implementation 14.00

Our Multiprefix-based Sort 13.66

1.1 Applications of Multiprefix

Multiprefix has been proposed as a parallel primitive because of its generality and the power that

it provides for expressing many parallel algorithms. For example, [RBJ88] show how to implement

an integer sorting routine using multiprefix in just a few steps. We also show that multiprefix can
be used to efficiently implement sparse-matrix vector multiplication.

A vector computer with scatter/gather capability may simulate a synchronous PRAM algo-
rithm by issuing one vector operation for each parallel step [CBZ90]. Using this approach, we

implemented a fully vectorized version of the multiprefix operator on the CRAY Y-MP and con-

structed a fast integer sorting algorithm that is competive in performance with the current best
approaches. The NAS parallel benchmark suite is a collection of 8 test problems intended to be

used to compare parallel machines [BBCS91]. The "Integer Sorting" benchmark requires the sort-
ing of 8 million 19-bit integers. Table 1 shows a comparison of the performance times reported for

three different approaches on the CRAY Y-MP at the time of writing this paper [BBB+91]. While

the time reported for our multiprefix approach represents a very young implementation with little

optimization, it still outperformed the other two approaches.
Our vectorized multiprefix operator was also used to implement a sparse-matrix by dense-vector

multiplication routine on the CRAY Y-MP. This mathematical kernel is very important in many nu-

merical applications. The two approaches compared to ours are a traditional row-major algorithm
that uses "compressed sparse row" storage, and an algorithm based on a "jagged-diagonal" storage

format [Saa89]. Of these, the jagged-diagonal approach trades off a large preprocessing time for

enhanced vectorization of the numerical portion of the algorithm. The row-major algorithm suffers
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Table 2: A comparison of the performance sparse-matrix vector multiplication routines on the CRAY Y-
MP. The size indicates the dimension of each matrix, while p indicates the density. For very large, sparse
matrices, the multiprefix approach excels, while the other methods are better suited to matrices of grc.ater
density.

Sparse Matrix-Vector Multiplication (Times in mS)

Order p Compressed-Row Jagged-Diag Multiprefix

15000 0.001 30.29 28.09 27.43
10000 0.001 19.52 16.31 12.43

5000 0.001 9.48 6.99 3.45
2000 0.005 3.90 3.23 2.77

1000 0.010 1.95 1.66 1.50
100 0.400 0.27 0.42 0.76

from poor vectorization because of the very short rows for sparse systems. Table 2 summarizes
our results for a number of matrices of varying size and density (p) and shows that the multiprefix

approach to this problem is competitive to more traditional FORTRAN-based approaches.

1.2 Theoretical Results

In this paper we present an algorithm for implementing the multiprefix operator for n vall-es in

S = O(V/'n) parallel steps on a p = V/i processor CRCW-ARB PRAM in s = 0(n + rn) space.
Another important complexity measure of an algorithm is the total work performed and is the sum
over all steps of the number of primitive, scalar instructions issued. For a serial algorithm on one
processor this is its traditional time complexity. A parallel algorithm is work efficient if it performs
no more work than an equivalent serial algorithm. Our multiprefix algorithm performs W = 0(n)
work; hence it is work efficient.

Of the CRCW PRAM models, the CRCW-ARB model assumes only that of multiple processors

writing to the same location, an arbitrary one succeeds. While not as restrictive as the EREW

model, the CRCW-ARB PRAM model is a fairly realistic representation of many current parallel
architectures that provide a shared memory. The CRCW-PLUS PRAM model allows a combining
function to be applied to values concurrently written to the same location [CLR89, page 6901. Our
multiprefix algorithm can be used to simulate a concurrent combining write for problem sizes n > p2.

Consider a parallel algorithm for a problem of size n = a 2p 2 (a > 1) on a p-processor CRCW-ARB
PRAM. With each processor simulating a virtual processors in 0(a) steps, our algorithm may
be used to simulate a concurrent combining write in 0(ap) virtual parallel steps, or 0(a 2p) real

parallel steps. Any other algorithm for a problem of the same size would require 0(a 2p) steps as
well, so that our simulation is optimal when n > p2 . Using our algorithm, we are able to claim

that for p processors:

* A CRCW-PLUS PRAM may- be simulated on a CRCW-ARB PRAM with only constant
slowdown for problem sizes n > p2 .

Our algorithm makes use of two novel techniques: an "overwrite-and-test" memory access

method and the creation of a "spinetree" data structure. The overwrite-and-test" memory access
method is an arbitration scheme related to parallel hashing [Kan90]. With this technique, all

processors vying for a particular resource send a unique value to a memory location assigned to
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labels: Int(n];
values: Int(n];
buckets: Int[m];
multi: Int[n];

SERIAL-INITIALIZATION:
for (i = 1 to n)

bucketsglabel[ill = 0;

SERIAL-MULTIPREFIX:
for (i = I to n) {

multi[i] = buckets[label(il];
buckets[label[if] += value[i];}

Figure 2: A simple serial algorithm for the multiprefix operation. This algorithm exhibits works properly
only if the elements are processed in order, making it unsuitable for parallel implementation.

that resource. If an attempt is made to write many values to the same location, the arbitrary
value written identifies the processor that wins the resource. In our multiprefix algorithm we use
this technique to build a special tree data structure called a "spinetree" that represents a virtual
combining network. By performing these operations only in the first phase of our multiprefix
algorithm, all remaining phases proceed with guaranteed EREW memory access.

2 Implementing Multiprefix

The multiprefix operation is most easily described by a straightforward serial algorithm. After
introducing the serial approach, we will explain why it is difficult to parallelize and then introduce
our parallel algorithm.

2.1 Serial Multiprefix

A simple serial algorithm for the multiprefix operation is shown in Figure 2. The n values are stored
m a vector called values with a corresponding label in the vector called labels. The vector multi
will hold the multiprefix values computed. The labels are known to lie in the range [1, 2, ..., m]. A
temporary vector called buckets is allocated to be as large as m to hold the reduction values for
each of the labels. Because the labels are integers no greater than m, they directly index sites in
the bucket vector. The initialization step clears all needed memory locations, but avoids accessing
all of the bucket entries by only clearing those sites referenced by the labels.

The main loop simply processes the elements in order. At each step i, the current value of the
bucket referenced by labei•f becomes the multiprefix value multi[). Then, the bucket is incremented
by the appropriate amount using the increment operator (+=). This loop is similar to the main
procedure of a bucket sort, or a general histogramming operation for integer keys, except that those
procedures do not save the value of the bucket before incrementing it. These intermediate values
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type spinerec = record {
rowsum: Int;
spinesum: Int;
multisum: int;
spine: ptr to spinerec;

bucket: spinerec[m];
temp: spinerec[n];

label: int(n];
value: int(n];
multi: int[n];

INITIALIZE:
pardo (i = 1 ton) {

temp[i].rowsum = 0;
temp[i].spine = &bucket label[i]];
bucketglabeljill.spine = &bucket[label[i]];
bucket label[i]].rowsum = 0;}

Figure 3: The type definition and initialization phase for the parallel multiprefix algorithm. All temporary
storage is cleared or set in one parallel step.

of the buckets are the multiprefix sums. By extending this operation to arbitrary data types with
an arbitrary summing function this algorithm implements a general multiprefix operator.

This loop is difficult to parallelize. It is clear that all elements may not be processed in parallel
because elements with the same label would conflict in their modification of the same bucket. Even

if accesses to only the same bucket could be serialized a total of n steps would still be required in

the worst case when all labels are the same,

2.2 Parallel Multiprefix

Our parallel algorithm for the multiprefix operation is shown in Figures 3 and 4. Figure 3 describes
the record structure used for temporary values while Figure 4 describes the four phases of the
algorithm. As before, the n values and their labels are stored in vectors value and label. The
multiprefix sums are written to multi, and the reductions are left in the temporary vector called
bucket, of size m.

The spinerec record type is used to store the temporary information associated with each bucket
and value/label pair in the algorithm. (We will often call a value/label pair an "element" when
describing the algorithm.) The spine field is a pointer that connects the elements and buckets into
a structure called a "spinetree." The other integer fields will be explained along with the later
phases of the algorithm.

In the initialization phamp, the temporary storage of each element and the bucket that each
element references is cleared as before. The spine pointer of each element is set to the address of

its bucket using the address-of operator (&), and the spine pointer of each bucket is set to itself.
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SPINETREE:
for (r = Vrdownto 1)

pardo (i = ((r - 1)vn + 1) to (tvi)) {
temp[i].spine = bucket label[i]].spine;
bucket Rabel[ill.spine = &temp[i];

}

ROWSUMS:
for (c = I to v's)

pardo (i = c to n by vf'i)
with temp[i] do

spine -- rowsum += value[i];

SPINESUMS:
for (r = 1 to V')

pardo (i = ((r -l)Vi + 1) to (rV,))
with tempfi] do

if (rowsum $0) then
spine spinesum = spinesum + rowsum;

MULTISUMS:
for (c = 1 to V/)

pardo (i = ctonby V/n)
with temp(i] do {

multi(i] = spine -- spinesum;
spine --. spinesum += value[i];

}

Figure 4: The body of the parallel multiprefix algorithm is executed in four main phases. The SPINETREE
phase builds the tree of data values. The other three remaining phases then execute with no memory access
conflicts.
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Figure 5: The pointer structure of the spinetree for 9 elements, each with the label 2. Because only the
buckets actually used are initialized, only bucket number 2 is set to point to itself; the other buckets have
unknown values in their pointer field.

These operations may be performed in parallel for all elements using concurrent writes and reads
of the buckets.

The four main phases of this algorithm will be explained using an example involving 9 elements,
all of which have the label 2 and a value 1. The result of this initialization step is the structure
shown in Figure 5. All elements direct their pointers to bucket number 2 and the buckets are set
to point to themselves.

The 9 elements are shown numbered in vector order but are conceptually arranged into a square.
This row and column arrangement is important because later phases will operate in parallel on all
of the elements in entire rows or columns in a pardo statement. Loops that access rows use a
control variable r while loops over the columns use a c. Rows are numbered from bottom to
top, and columns from left to right. Given a row r, the elements on that row lie in the range
[((r - 1),/n") + I,..., rv/4i. Similary, the elements of column c are given by the sequence [c, c +
v e, c + 2V/i, ... c + (V/n - I )/1]. These formulas involve simple array address calculations.

This arrangement into rows and columns requires that n be a square. When this is not the
case, it is a simple matter to pad the elements up to a square. Later, we will show how this can be
avoided in certain circumstances.

The SPINETREE phase links the elements together into the spinetree structure. For each
row, from top to bottom, the spine value of each element is replaced with that of its bucket using a
concurrent read. Then, by using a concurrent write, the spine pointers of the buckets with elements
on the currently active row are overwritten by the address of one of these elements.

This process is illustrated in Figure 6 with the initial state of the pointers shown on the left,
and the pointer configuration after each row update. The active row is highlighted for each step.
After the top row executes this step only the bucket pointer is changed to point to one of the
elements of the top row. When the middle row is updated, each element is set to reference an
arbitrary element with the same label in the preceding row. Finally, each of the elements of the
bottom row readjust their pointers so that they now also reference an element with the same label
in the preceding (middle) row.
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14 2 3 4 5 2 3 4 5 2 3 45

7S7 a 9 7 8 9 8 9

4 5 5 4 5 8 j 5 a 4 5 9

A1 2 3 1 2 3 1 2 3 ..c .

Figure 6: The evolution of the spine pointers during the SPIN ETREE phase of the algorithm. The rows
are processed in order with the elements of each first reading the pointer of its bucket, and then attempting
to write their own address there. At the end of this process elements with the same label are linked into the
spinetree data structure.

The pointers now describe a tree with the property that every element is either on a special
path called the "spine" or points directly at an element on the spine. In this tree, each child has
a pointer to its parent. A "spine element" is defined as any that has a child in the tree, and the
spine is the path that connects the spine elements. In our example, the spine includes elements 4
and 7 and the bucket. (The pointer from the bucket is no longer used and is not considered part
of the tree.) Because all elements have the same label (2), they form a connected tree. In general,
when there are different labels, each set of elements with the same label (called a "class") forms
its own spinetree with its bucket as the root.

The SPINETREE phase uses an "overwrite-and- test" memory access method to determine
which elements of a class will be the spine elements. The elements of each row attempt to "over-
write" their bucket to become a spine element. Element% of the next row "test" the bucket pointer
value to determine the element of the preceding row that becomes their parent. In this manner, a
tree is built such there is only one element of each class on each row that has children. The other
three phases use this spinetree data structure to ensure that only one element ever attempts to
update its parent in parallel, ensuring EREW memory access.

Snapshots of the intermediate values for each of the elements after the remaining three phases
are shown in Figure 7. An arrow indicates the order of access by rows or columns. The ROWSUMS
phase sweeps across the columns and operates on all elements in a column in parallel. Because the
parent of each element must be in a preceding row, elements with the same label in a columin will
have different parents. By accessing the elements in columns, each element increments the rowsrm,
value of its parent without conflict. At the end of this phase, each spine element is left with the
sum of its children in the field rowsum. Elements that are not on the spine will have a 0 rowum"
value.

In the SPINESUMS phase, a prefix sum is computed along each spine in the splnosum field.
Working from the bottom row to the top, each spine element sends the sum of its spinesum and
rowstms value to its parent, calculating a recurrence along the spine. Since only spine elements
will have a non-zero rowstan value, the conditional ensures that only spine elements participate.
Because there is only one spine path through each spinetree, there are no memory access conflicts
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ROWSUMS: SPINESUMS: MULTISUMS:

Figure 7: The pointer structure of the spinetree for 9 elements, each with the label 2. Because only the
buckets actually used are initialized, only bucket number 2 is set to point to itself; the other buckets have
unknown values in their pointer field.

as children update their parents. At the termination of this phase, each spine element will have in
its spinesum field the sum of the elements in its class preceeding any of its children. Hence, each
bucket will be left with the sum of all elements in its class not including those of the top row.
The reduction value for each class may be calculated directly at this point by adding together the
rowsum and spinesum values of the buckets.

In the last phase, called MULTISUMS, the final multiprefix values are distributed to each of
the elements. Initially, each spine element has in its spinesum field the sum of all elements in its
class preceeding any of its children. By accessing the columns in order, each child reads this value
as the sum of all elements in its class preceding it, and then increments its parent for the next
element of its class on the same row. Once again, access by columns ensures that no two children
attempt to update the same parent concurrently. Because the columns are accessed in order, each
child is guaranteed of receiving its multiprefix sum in vector order.

The final values shown in Figure 7 show the results of a simple multiprefix addition on a vector
of l's with the same label. As expected, the multiprefix operation serves to enumerate these values
beginning at 0 and leaves a count of how many values there are in the bucket.

3 Algorithmic Analysis

The analysis of this algorithm is straightforward because the memory access patterns are very
regular. We will make use of two measures to express the complexity of our algorithm. The
first is the step complexity (S) which measures the total number of parallel steps required by the
algorithm. This is the traditional parallel time measure expressed for most PRAM algorithms.
The second is the work complexity (W) which measures the total number of elements operated on
over all steps. A parallel algorithm that has a work complexity no greater than an equivalent serial
algorithm by a constant factor is called "work efficient."

The initialization phase executes in a single parallel step. Each of the other four phases operates
on an entire row or column in parallel with the pardo statement in the inner loop. The outer loop
iterates over columns or rows for the inner parallel loop. Since there are Vrn rows and columns,



the outer loops of all four phases execute exactly n parallel steps. The parallel step complexity
of the entire algorithm is S = 0(,n).

The total amount of work performed by this algorithm is the sum over all steps of the number
of all elements operated on. The initialization phase obviously performs W = O(n) work. The later
phases require O(V•/i) steps and operate on exactly ./n- elements. Therefore, the work complexity

of this algorithm is W = O(n). Because a serial algorithm would also have to perform O(n) work
(by visiting all of the elements) this algorithm is work efficient.

3.1 Correctness

The algorithm depends on some special properties of the spinetree data structure. In this section
we will discuss those properties and show that they are maintained for any possible labeling of the
values.

Theorem 1 Elements have the same parent iff they have the same label and are in the same row.

Proof: For each bucket b, let R6 = (rk..rl) be the ordered set of rows in which elements have
the label b where ri+l > ri. All elements update only their own bucket, so we may consider each
class independently. Since the SPINETREE procedure operates in reverse row order, we need only
consider for each class b those steps involving rows in R6 in order.

All elements in row ri with label b replace their spine pointer with that of their bucket and thus
have the same parent. Bucket b is then overwritten with a pointer to a member of row ri. Because
the elements may be only a member of one row the pointer values overwritten for each row will be
unique and elements will find the same parent only if they were processed together, on the same
row.
0

Corollary 1 The children of a spine element are in different columns.

Proof: Since the children of a spine element are in the same row, none of them may be in the same
column.
0

From these properties we can guarantee that when operating on elements in the same column

in parallel, these elements may update their parent with no other member of their class interfering.
Also, since each element's parent is in another row, when operating on all elements of the same
row in parallel each may modify its parent with the assurance that their parent is not also active.
In short, by using the arbitrary concurrent WRITE of the SPINETREE phase we have created a

data structure in which EREW memory access is guaranteed for the remaining three phases of the
algorithm.

Theorem 2 There is at most one spine element per class per row.

Proof: A spine element is one that has children. An element is only a candidate for having children
if it manages to write its value into its bucket's spine field. This can only be done while its row is
active. Because of the write ARB only one element of its class in its row may succeed to become
a candidate for having children.
0
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Corollary 2 A spine element has at most one child that is also a spine element.

Proof. From the preceding theorems. Two children of a spine element could only be spine elements
if they were on different rows, and this is impossible since children of the same parent are necessarily
on the same row.
0

This corollary ensures us that the spine path through the tree for each class has at most one
spine element per row. This property is important for the proper functioning of the SPINESUMS
phase of the algorithm. In that phase, the spine elements forward their value to their parents.
If two spine elements could exist on the same row, or if a spine element could have two children
that are spine elements, then there could be write conflicts. Since only spine elements may have a
non-zero rowum value, by processing the rows in order from bottom to top, the sums computed
along the spines (the splnesum value) add together only the rowsum values of the spine elements.

4 Implementation on the CRAY Y-MP

We implemented our algorithm in C on the CRAY Y-MP. We chose C only because most of our
other tools were written in C. This also allowed us to more easily use the C-preprocessor to provide
all of the variants of multiprefix we desired with one main template source file. These included
such variations as ADD, MULT, MAX, MIN, AND, OR on data types INTEGER, DOUBLE and
BOOLEAN. Full vectorization of the algorithm was achieved by directing the compiler to vectorize
each of the inner pardo loops. Because the vectorization of these loops is straightforward, it would
also be simple to translate the algorithm to FORTRAN.

For our implementation on the CRAY Y-MP we modified the algorithm slightly to use array
indexing instead of pointers. This required two simple changes. The first change was to a range
bucket memory to be contiguous with the prefix element memory. This was easy to ensure at the
time of allocation. Temporary memory was allocated in one block and divided by a "pivot" point
as shown in Figure 8. Memory to the left was reserved for buckets, and memory to the righ: for
the elements. In this manner the buckets were addressed by small integers between 1 and m, . ad
the elements were addressed by integers in the range m + 1 to m + n. Because references to the
elements were generally made with respect to a row or column, the conceptual arrangement of the
temporary memory that of a square array with a "handle" for the buckets.

Access of the elements by rows or columns was complicated only by the additional offset. Access
by rows, as in the SPINETREE and SPINESUMS phases, simply offset the loop variable i by m.
The same change occurred for column access in the ROWSUMS and SPINESUMS phases. By
carefully recoding these loops, the compiler was able to deduce that a simple offset was added, as
if some references began at an unnamed array allocated at location rn + 1.

The second change required unpacking the fields of the spinerec record type so that each field
was allocated as a separate vector. Instead of one vector of records with four fields, we used four
arrays called spine, rowsums, spinesums and prefixsums. Using this arrangement, the spinetree
data structure could be described by a single vector of length (n + m) of integers no larger than

(n + m). Figure 9 shows the spinetree structure of the earlier example in its pointer form, and in
the integer vector form allowed when the elements are contiguous with the buckets. The vector
index of the buckets and elements is shown above each element; it is these indices that the spin*
values indicate. This allowed the pointer dereferencing operations to be implemented as direct
scatter/gather operations using array indexing.
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buckets vian Ifls

Figure 8: Temporary memory for the buckets and elements is allocated in a contiguous block but divided
at the "pivot" point. Buckets are located at sites 1 through m, while the elements are offset at positions
m + I to m + n. The rows and columns of the elements are indicated by the conceptual arrangement shown.

buckets
1 2 3 4 5

8 ElI 3  [1

3 2 3 4
buck~et A RInMMU

kufnents (pIotO

Figure 9: A single integer array is used to describe the spinetree data structure. On the left is shown
the spinetree from the earlier example. On the right, is its equivalent representation with the index of the
elements now offset by m. While the buckets and elements are allocated in one array, it is conceptually
divided at the pivot point into the shape shown.
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Table 3: Vector characterization parameters for the loops of each of the four phases of the multiprefix
algorithm. The asymptotic time per element (t.) is in 6nS clocks per element on the Y-MP. The short
vector half-performance lengths indicate that these loops perform well for small problem sizes.

Vector Characteristic Parameters

Phase te (6nS clk/elt) nr/2

SPINETREE 5.3 20
ROWSUM 4.1 40
SPINESUM 7.4 20

PREFIXSUM 6.9 40

This arrangement also relieved a source of potential memory conflicts that could arise in the
record based implementation when referencing the same field in continguous records. Since the
record required 4 words of storage, any sequential access of the same field in the records would
result in a memory access with stride 4. Such an access pattern would only make use of 1/4 of the
memory banks available.

One last minor change was made to the initialization phase. In almost all applications the

number of buckets, m, is no more than the number of elements, n. In the modified initialization
we accessed each bucket directly rather than indirectly through the elements. While this altered
the theoretical complexity measure for the real algorithm, in practice it was always faster.

4.1 Characterization of the Vectorized Loops

With these modifications, the inner pardo loops could be fully vectorized along the required rows
or columns using scatter/gather operations. Note that while row access is by consecutive elements,
column elements are accessed with a constant stride. In this section we describe the loops involved
in each of the four phases and develop performance estimates for them. Of course, since the memory
access patterns are data dependent, we can only give average case performance figures. However,
these have shown to be fairly accurate predictors of performance.

The performance of a vector operation on the CRAY Y-MP may be characterized by the half-
performance length (nl/ 2) and the time per element to produce each result (te) [HJ88]. With these
parameters the approximate time to execute a fully vectorized loop over n elements is

t(n) = t.(n + n112 ).

Table 3 summarizes the vector parameters for the loops of the four phases as described below. By
using the indirect addressing scheme for the spinetree described in the previous section, the coding
of each of these loops is straightforward.

1. The SPINETREE Loop

for Ui = each element of row r) {
spine [i] = bucket [label[i]];
bucket(label [i] = spineCi];

}

The loop shown above is issued for each row of elements. The compiler splits this (using loop
fission) into a gather operation followed by a scatter.

13



2. The ROWSUM Loop

for (i a each element of column c)
rowsum[spine i]] - rousum[spineWi]3 + value[i];

}

This loop is executed for each column. The compiler vectorizes this easily, accessing the
elements of each column with a constant stride. However, since this loop involves 3 read
operations and 1 write and there are only 2 read pipes on the Y-MP, it does not run at peak
speed.

3. The SPINESUM Loop

for Ui - each element of row r)
if (rowsum[i] != 0)

spinesum[spine Ci] = rowsum[i) + spinesum[i];
}

This loop vectorizes but is problematic because of the technique the compiler currently uses.
For each group of 64 elements, the compiler first determines which are FALSE. Each of these
is given a dummy location to which to send a dummy value. In this way, elements whose
rowsum is 0 do not update their parents. Because all dummy values are the same, when
there are many FALSE sites the dummy location becomes a hot-spot for memory contention,
possibly causing a performance loss. On the other hand, if all 64 elements are FALSE, none
of the spine or spinesum values are even read and the loop jumps ahead to the next group of
64 elements. These two opposing effects lead to some strange results.

4. The PREFIXSUM Loop

for Ui - each element of column c) {
multi[i] = spinesum[spine[i]);
spinesum(spine[0i) = spinesum(spine[i)) + value i];

}

This loop is very similar to the one of the ROWSUM phase but involves one extra write.
Because the CRAY Y-MP has only one write-pipe, this operation requires approximately the
cost of an additional gather operation beyond the ROWSUM phase.

4.2 The Multireduce Operation

The multireduce operation provides only the reduction values for each label. By modifying the
algorithm slightly we can obtain a multireduce operation that saves a significant amount of time
over the entire multiprefix operation. The key insight is that after the SPINESUMS phase, the
reduction values for each label may be calculated directly by summing the rowsum and spinesum
value for each bucket.
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Figure 10: The time per element required for input sizes ranging from I thousand elements to 1 million.
Each curve represents a different .average bucket load. A load of n means that only one bucket was used and
that all labels were the same. A load of 1 indicates that n labels were randomly distributed over n buckets.
Other load factors represent more typical situations.

On the CRAY, this is a simple addition of two vectors and requires only slightly more than 1
clock tick per element. Compared to the PREFIXSUM phase, which requires almost 7 clock ticks
per element, this is a substantial savings in time, for only a small modification to the algorithm.

4.3 Effects of Label Distribution

The performance of this algorithm is heavily dependent on the density and distribution of the
integer labels. The "load" of a bucket is the number of elements in its class. While a heavy
average load will degrade the performance of the SPINETREE phase, the same effect may cause
the SPINESUM phase to run very quickly. In this section we will describe how these factors interact
for different types of data for each of the four phases of the algorithm.

Using a standard pseudo-random number generator to provide us with labels, we timed the
multiprefix operation over a wide range of input sizes and bucket load factors. Our results are
summarized in Figure 10 with times expressed in 6nS clock ticks per element. Each curve represents
a different bucket load factor. A load factor of n indicates that all elements had the same label,
while a load factor of 1 means there were as many buckets as elements. However, because of the
random number generator used, this does not indicate a one-to-one mapping from elements to
buckets.
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This data deserves detailed explanation. Three representative cases are explained in below.
These are a heavy load (1 bucket), a moderate load, and a light load (n buckets).

Heavy Load: (All labels are the same.) The SPINETREE phase suffers because all scatter/gather
operations are to the same memory location, requiring a total of 12 to 13 clock ticks per el-
ement. However, after this initially expensive operation, the other three phases run fairly
quickly. The ROWSUMS and PREFIXSUMS phases perform as expected, but the SPINE-
SUMS phase exhibits almost superlinear speedup.

Remember that the compiler breaks the rows into chunks equal to the vector length (VL),
which is 64 on the CRAY Y-MP. Because only one element per row can be a spine element
(since all are in the same class), only one group of 64 elements per row performs any real
work, the other groups all exit early. For this reason, this loop runs in as little as 2 to 3
clocks ticks per element, offsetting the expensive spinetree creation phase.

Moderate Load: This is the region in which the algorithm is most predictable. The performance
characterization numbers given earlier for the loops most accurately reflect this situation.

Light Load: Because our CRAY implementation initialized each of the buckets to 0 explicitly,
this situation incurs the expense of the additional time required with a very large number of
buckets. While the SPINETREE, ROWSUMS and PREFIXSUMS phases all run quite well
for this case,, it is again the SPINESUMS phase that behaves strangely. Because there are
many classes of few elements each in this case, there are few spine elements on each row, but
not so few as to gain the superlinear speedup effect. What occurs here is that each group
of 64 elements has many FALSE sites which result in the writing of a dummy value to a
dummy location. This one location receives values for ALL of the FALSE sites. Because
of this memory contention, the SPINESUMS phase runs quite slowly, requiring 8 to 9 clock
ticks per element.

What is most interesting about these observations is not the fact that performance varies with
label distribution, but that the absolute performance of this algorithm shows little sensitivity to
these variations. Even at the far extremes of heavy and light loading, the adverse affects to one
phase are offset by the benefits to another. Over input sizes ranging many orders of magnitude,
the time per element required varies no more than a few clocks. This fact should assure anyone
using this algorithm that it will offer comparable performance for many different applications.

4.4 Choosing the row length

In the theoretical PRAM model of the preceding sections, the number of elements n was assumed
to be a square. However, the length of the rows and columns may in fact be chosen separately
so that their product is slightly greater than n. On the CRAY, the total time of the algorithm is
more nearly a linear function of n provided the loops fully vectorize. Because the loops of the four
phases are effectively vectrorized, each of the four main phases of the algorithm expend almost a
constant amount of time per element.

The main body of the multiprefix algorithm executes in four loops alternatively over the rows
and columns of the elements. Given a variable p as the chosen row length, the number of columns
will be approximately n/p. The first phase, called SPINE, will then execute in time

tI(n) = ti(p+ n'/2) n
e° 

p
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while the second phase, which cycles through the columns, will require

t2 (n) = t +(- n2/.)n.

Ignoring the initialization phase, the time for the entire multiprefix algorithm is the sum over
the four phases of the times required by each phase.

t~p = ~(p )n + t2(n~ 2 )n + t4(n 3 4 f
tMp = t!(p+n/ + ne2 + nf/2)n + t.(p + /2 e + n/2,)n

We may find the value of p that minimizes this function by differentiating and setting the
derivative equal to 0. This shows that the total time is minimized when

I tn + t+3n3

.tn 2  + t4 n4

1/2 + 1/2

For the values of the loop parameters reported earlier, this gives

p = 0.749V,•

indicating that a slightly shorter row length is preferred. (The reason this skewing is so slight is
that the loop parameters are fairly evenly matched for the four phases.) However, the sensitivity of
this formula to variations in p near the optimal value is very small. For example, using the average
case loop performance figures from before, the percent difference between the total time with this
optimal row length and a row length of Vi is less than 2% when n = 1000. For larger n, the total
time is even less sensitive.

Because the row length p is the stride used for column access, a more important consideration
is the choice of a value that minimizes memory bank conflicts. Our implementation chooses a value
near the square root that is not a multiple of the number of memory banks nor of the bank cycle
time (4 in the case of the CRAY Y-MP).

5 Applications Using Multiprefix on the CRAY Y-MP

In the introduction we showed the performance figures collected for two applications built using
our implementation of the multiprefix operator on the CRAY Y-MP. Each uses multiprefix as their
core step. This section describes the details of their implementation and provides further analysis.

5.1 Integer Sorting

The integer sorting problem requires sorting n integers keys whose values lie between 1 and m, for
some known m. An algorithm for integer sorting using multiprefix was first described by Ranade
in [RLBJ88]. The algorithm computes a rank value for each key that gives its position in the final
sorted order. Equivalently, the rank of each key indicates how many keys should precede it in sorted
order. The entire algorithm is presented in Figure 11. Because the multiprefix operator guarantees
that prefix sums are calculated in vector order, this sorting (ranking) algorithm is stable.

Using the integer keys, the first application of multiprefix-PLUS to a vector of l's provides a
count of the number of preceding equal keys for each integer. This step also leaves a count of
the total number of each key in the buckets. For each bucket, its cumulative value gives the total
number of lower-valued keys preceding it. This vector is calculated with another multiprefix-add
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key: Intln;
bucket: int(m];
cumulative: Int[m];
rank: Int[n];

INITIALIZE:
pardo (i = 1 to m)

bucket[i] = 0;

INTEGER-SORT:
MP(1, key, +, rank, bucket);
MP(bucket, 1, total, cumulative);
pardo (i = 1 to n)

rank[il = rank[i] + cumulative[key(il] + 1;

Figure 11: A fast integer sorting algorithm using multiprefix.

operation with all keys being equal. By adding the prefix sums to these values, the final sorted
ranking for each key is calculated.

Based on the previous complexity measures, this sorting algorithm has S = O (V/n+ V/m) parallel
step complexity, and performs W = O(n + m) work. The serial counterpart to this algorithm is
called "counting sort" and performs just as much work tKnu68, CLR89], so our algorithm is work
efficient.

5.1.1 The NAS Integer Sorting Benchmark

In Table 1 we compared the time of our integer sorting procedure to two others recently reported.
When timing the NAS integer sorting benchmark on the CRAY Y-MP we took advantage of the
fact that each of these applications of multiprefix are simplified cases. In the first call to MP, the
values summed are all 1. By using the fact that each value[i) was a constant, the compiler was
able to generate more efficient code. This avoided a memory access in each of the ROWSUM and
PREFIXSUM loops, allowing them to run faster.

The second multiprefix ADD is used to compute partial sums across the buckets, all of which
have the same label. This operation is a simple prefix-sum, or recurrence computation of the form:

ci = bi- 1 + ci-i..

For the benchmark timing, we resorted to the traditional "partition method" for solving this part
of the problem [HJ88].

Even though both applications of multiprefix in this algorithm are simplified cases, its use is
significant. Previous attempts to vectorize the first step of the bucket sorting algorithm have relied
on sophisticated compiler technology to recognize this particlar loop. We made a simple change to
a very general purpose algorithm and achieved excellent performance.
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vector: Int[m];
rows: Int[nJ;
cols: Int[n];
vals: double[n];
product: double(n];

PARALLEL-MATVECT:
pardo (i = 1 to ni)

product[i] = vals[i] x vector[cols[il];
MR(product, rows, +, vector);

Figure 12: Sparse Matrix Vector multiplication using multiprefix.

5.2 Sparse Matrix Vector Multiplication

Multiplication of a dense vector by a sparse matrix is at the core of many numerical algorithms.
This operation appears when solving systems of linear equations by iterative methods, and in finite
element analysis.

The multireduce operator allows a straightforward sparse-matrix vector multiply algorithm as
shown in Figure 12. A vector of length m is multiplied by an array with n non-zero elements.
The elements are stored in three vectors that hold their values, and the row and column index
of each. In the first step, all products are computed by multiplying each matrix element by the
vector element matching its column index. Then, in the second step, all products with the same
row index (key) are added together with the multireduce operator. (Because the partial sums are
not needed, a full multiprefix is not used.)

Many elaborate storage schemes have been developed to allow the numerical portion of this
algorithm to proceed at near peak speed on vector computers. The Compressed Sparse Row (CSR)
storage format is most typically used and arranges the matrix into rows, with the column index of
each element stored in a separate vector. This format is very simple and allows the matrix-vector
multiply operation to vectorizR completely over each row. However, for very sparse matrices, the
row lengths can become quite short. Often they are much shorter than the vector half-length of
the operation. In an attempt to write loops that better vectorize over more elements, other storage
schemes have been developed.

The Jagged Diagonal (JD) format requires that the matrix is reordered so that the rows appear
in decreasing order of population count. Here, the elements of the re-ordered matrix are collected
into groups called "jagged-diagonals." The first jagged-diagonal consists of the first elements of
each row; the second, of the second elements, etc. Because the rows are sorted, each of these groups
is of successively decreasing length. The elements of the diagonals are stored in an array called
JDA with their column positions in JDJ. The starting position of each jagged diagonal is given in
an array the length of the dimension of the matrix called JDSTART, while the row index of each
element is implicit in its position within each jagged-diagonal.

In this format, each jagged-diagonal begins with an element in row 1, and ends with an element
in row k, where k is the length of the jagged-diagonal. Because each of the elements of a group
are in different rows, each group may perform a vector update in parallel without the possibility
of simultaneous access to the same vector element.
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Many sparse matrices consist of just a few jagged-diagonals and the operation vectorizes com-
pletely over each jagged-diagonal. The disadvantage of the JD method is its large pre-processing
time and the potential problems it has with non-uniform sparse matrices. For matrices with just a
few long rows, many of the groups are very short and operations over them vectorize poorly.

5.2.1 Setup Time

The matrix-vector multiply operation can be divided into two parts. The first is the symbolic
"setup" time, while the second is the numeric "evaluation" time. Often, when solving systems of

linear equations, the same matrix multiplies a vector repeatedly. In this case, a high setup time
can be amortized over many evaluations. It is precisely for this reason that the large setup time
associated with the jagged-diagonal format is acceptible for some applications.

In the multiprefix approach, the setup time is precisely the time spent in the first phase of the

multiprefix algorithm building the spinetree. We consider the CSR format approach the base case,
and associate no setup time with it.

The times reported in the introduction in Table 2 are shown below in Table 4 broken down
into setup, evaluation and total times. The order columns gives the number of rows of each matrix
and the fraction of non-zero entries is expressed by its density, p. For very large sparse matrices
the JD approach trades a large setup time for a quick evaluation. The multiprefix (MP) approach

performs less of its total work during setup, while the CSR approach suffers from very short row
lengths for extremely sparse matrices. Because of the speed of the evaluation phase of the JD
approach, its use would be preferable in an application that requires repeated multiplication of the

same matrix, while the MP approach would be better suited to cases where only one multiplication
is performed. However, the JD approach has problems with non-uniform matrices.

A different series of trials was timed using matrices from electrical circuit simulation problems
distributed with the SPARSE sparse matrix package [KSV]. These matrices are very sparse, with
an average of only 7 or 8 elements per row, but have a few very long rows. These rows represent
power and ground and are almost completely populated. The results are presented in Table 5.

In these few trials the MP approach clearly In these cases the MP approach clearly outperforms
both the CSR and JD weakness of the JD format, and it has been suggested that such long rows

should be handled as a special case [AY89]. In general, the performance of the multiprefix approach

is more consistent over matrices of varying structure.

6 Conclusions

In this paper we presented a parallel algorithm that implements the multiprefix operation. Our
approach introduces some novel techniques. We used the power of the arbitrary concurrent write as

An arbitrarion scheme to build the virtual combining network represented by our SPINETREE data
structure. Then, having designed a general purpose synchronous parallel algorithm, we ported it to
the CRAY Y-MP by simulating each parallel step with a single vector operation. Since our parallel
algorithm is work efficient, we are assured that our fully vectorized simulation of the algorithm

runs in linear time.
The multiprefix operation has been proposed as a general purpose parallel primitive. We showed

how it can be used to build two seemingly unrelated algorithms: integer sorting and sparse-matrix

vector multiplication. By using the multiprefix operator, the algorithms are written at a very high

level, avoiding the detailed loop organizations often developed for vectorized algorithms. Using this
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Table 4: A breakdown of the setup and evaluation times of three approaches to sparse matrix vector
multiplication for matrices of varying size and density. For each category, the best times are highlighted.
The CSR approach does no preprocessing, while the JD approach trades a large preprocessing time for a very
quick evaluation time. The TOTAL time represents the time required to perform one setup and evaluation.
When performing only one matrix vector multiply, the multiprefix approach excels for very sparse matrices.

Sparse Matrix Vector Multiplication (times in mS)

[Order PD Setup Evaulation Total
CSR JD MP CSR JD MP CSR JD MP

15000 0.001 24.26 5.87 30.29 3.83 21.56 30.29 28.09 27.43
10000 0.001 14.58 2.64 19.52 1.73 9.79 19.52 16.31 12.43
5000 0.001 6.54 0.81 9.48 0.45 2.64 9.48 6.99 3.45

2000 0.005 2.90 0.65 3.90 0.33 2.12 3.90 3.23 2.77
1000 0.010 1.47 0.36 1.95 0.19 1.14 1.95 1.66 1.50

100 0.400 0.32 0.20 0.27 0.10 0.56 0.27 0.42 0.76
50 1.000 0.19 0.24 0.14 0.13 0.29 0.14 0.32 0.53

Table 5: A comparison of the setup and evaluation times for some matrices representing electrical circuits.
For these matrices with a few very full rows, the JD approach suffers a severe performance loss.

Sparse Matrix Vector Multiplication (times in mS) _

Title: Order p Setup j Evaulation [ Total 1
CSR JD MP CSR JD MP CSR JD MP

ADVICE2806 2806 .0030 6.08 1.*85 7.99 2.41 2.28 7.99 8.49 4.13
ADVICE3776 3776 .0019 8.13 2.10 7.19 3.21 2.72 7.19 11.34 4.82
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approach we developed algorithms competetive in performace with more traditional FORTRAN-
based approaches.

This work provides further evidence in support of higher-level parallel primitives for portable
parallel programming. By structuring algorithms at a more abstract level we relieve the pro-
grammer from writing machine-dependent code or adding compiler directives that show where the
parallelism is. In the long run, as parallel computer architectures evolve, only the implementations
of the parallel primitives will be refined, allowing user application code to be reused.
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